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OBJECTIVES

• Compare measured and modeled shortwave radiation
components.

• Test ability to model radiation components,
especially aerosol influences.

• Identify problems in measurements and/or
understanding.



TWO CLOSURE EXPERIMENTS
Compare measured and modeled irradiance components
Direct Normal Solar Irradiance

DNSI
Diffuse Downwelling Irradiance

DDI

SHADED PYRANOMETER



DNSI CLOSURE EXPERIMENT
Direct Normal Solar Irradiance (DNSI):

Measure: Normal incidence pyrheliometer, Active cavity radiometer

Model: DNSI = −∫ E d0( )exp( )λ τ λλ

E0( )λ  = solar spectral irradiance at top of atmosphere: Kurucz (1995)

τ τ τ τ τλ = + + + +Rayleigh water ozone aerosol...

Gaseous absorption: FASCODE (1997) via MODTRAN-3

Aerosol extinction τaerosol is determined by sun photometry by difference
at discrete wavelengths as

τ τ τ τ τλaerosol Rayleigh water ozone= − + + +( ...)

Continuous τ λaerosol( ) required for wavelength integration is obtained by
the Ångström exponent α τ λ= −d dln / lnaerosol .



DNSI CLOSURE EXPERIMENT - RESULTS
Measurements at DOE ARM site, north central Oklahoma
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DNSI CLOSURE EXPERIMENT - FINDINGS

• For 36 independent comparisons, the agreement between measured and
model estimated values of DNSI falls within the combined uncertainties
in the measurement (0.3 - 0.7%) and model calculation (1.8%).

• On average model underestimates DNSI by (-0.18 ± 0.94)%

• For a DNSI of 839 W m-2, this corresponds to -1.5 ± 7.9 W m-2.

• The agreement is nearly independent of airmass and water-vapor path
abundance.



SENSITIVITY OF MODELED DNSI TO
INPUT PARAMETERS
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Increase in DNSI, W m-2

Measured - Modeled

Aerosol Optical Thickness
Decrease 0.01

Precipitable Water
Decrease10%

O3 Column Burden
Decrease 25%

Ångström Exponent
Increase 0.1 Direct Normal Solar 

Irradiance (DNSI)
SZA 59.7°

SGP APRIL 18, 1996 14:27:30 UTC

• DNSI closure is highly sensitive to aerosol optical thickness.



THE DNSI CLOSURE EXPERIMENT
IS IT TAUTOLOGICAL?

• Closure of DNSI implies accurate knowledge of wavelength dependence
of all contributions to column extinction plus knowledge of the solar
spectrum at the TOA.

• So-called aerosol extinction is obtained as a difference between
measured extinction minus extinction due to Rayleigh scattering and
known gaseous absorption.

• Agreement between measured and modeled DNSI means that this
aerosol extinction is Ångström-like.

• In principle this closure would be consistent with an Ångström-like
atmospheric absorption masquerading as an aerosol extinction
coefficient.



AEROSOL FORCING OF DIRECT SURFACE
IRRADIANCE

Measurements at DOE ARM site, north central Oklahoma
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• Note close agreement between measurements and model even on
expanded scale.

• Note strong sensitivity of direct beam irradiance to aerosol optical
thickness.



DDI CLOSURE EXPERIMENT
Cloud-free skies

Diffuse Downwelling Irradiance (DDI):

Measure: Shaded pyranometer

Model: DDI DD= ∫ E d( )λ λ

EDD∫ ( )λ  from radiative transfer model (MODTRAN, DISORT, 6S)

Input variables: Bwater , Bozone, τ λaerosol( ), single scattering albedo ω0,
asymmetry parameter g.

As with DNSI experiment, aerosol extinction τaerosol is determined by
sun photometry by difference at discrete wavelengths as

τ τ τ τ τλaerosol Rayleigh water ozone= − + + +( ...)

and the continuous τ λaerosol( ) required for wavelength integration is
obtained by the Ångström exponent α τ λ= −d dln / lnaerosol .



MEASUREMENT ISSUE
The shaded pyranometer radiates in the infrared.

This is manifested by a negative signal at night
("nighttime offset").

Presumably an offset is present during the day, but
how much?
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CORRELATIONS OF NIGHTTIME RADIATION COMPONENTS



CORRECTION FOR INFRARED OFFSET
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 Scaled to pyrgeometer by E. Dutton
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Uncertainty in correction may be as great as 3 to 4 W m-2.



UNCERTAINTIES IN MODELED
DIFFUSE IRRADIANCE

Cloud-free skies

Propagated from sensitivities to input variables, evaluated as uncorrelated:
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Decrease in Diffuse Downwelling Shortwave Irradiance, W m-2

 
Modeled - Measured

 

Aerosol optical thickness
  Decrease 0.01 (to 0.05)

Single scattering albedo 
  Decrease 0.11 (to 0.75)

Surface albedo  
  Decrease 0.1 (to 0.07)

 Asymmetry parameter 
  Decrease 0.3 (to 0.3)

SZA 40.29°
SGP 9/27/97 1722 UTC



DIFFERENCE IN MODELED - MEASURED
DIFFUSE IRRADIANCE

Cloud-free skies
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Modeled diffuse irradiance systematically exceeds measured except at
high altitude sites.



DIFFERENCE IN MODELED - MEASURED
DIFFUSE IRRADIANCE

EXPRESSED AS OPTICAL THICKNESS
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There is an apparent excess optical thickness of ~0.02 at low-altitude
mid-latitude sites.



SUNPHOTOMETER MEASUREMENTS OF APPARENT AOT (440 nm)
About 80000 Measurements (1993 - 1998)

 32000 Western U.S., 10000 Eastern U.S., 10000 Mid-Continental Canada, 12000 Brasilia, 16000 Western Sahara
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AEROSOL FORCING OF IRRADIANCE
COMPONENTS

Measurements at DOE ARM site, north central Oklahoma
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• Note discrepancy between measured and modeled aerosol forcing of
diffuse downwelling irradiance.

• Diffuse forcing cancels much of the direct beam forcing, but aerosols
remain a strong irradiance forcing agent.



CONCLUSIONS

• There is excellent agreement between measured and
modeled direct beam irradiance when measured
apparent AOT is input into radiation transfer model.

• There is systematic disagreement between measured
and modeled diffuse downwelling irradiance when
measured apparent AOT is input into radiation
transfer model.

• This disagreement is consistent with an unknown
absorption of about 0.02 in optical thickness at
mid-visible wavelengths.


